Preliminary communication

X-RAY CRYSTALLOGRAPHIC STUDIES ON OCTAHEDRAL OXO ALKYLIDENE COMPLEXES OF TUNGSTEN(VI): W(=O)(=CHCMe₃)(PMe₃)₂ Cl₂ AND W(=O)(=CHCMe₃)(PEt₃)₂Cl₂

MELVYN ROWEN CHURCHILL*, ARNOLD L. RHEINGOLD**, WILEY J. YOUNGS

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214 (U.S.A.)

RICHARD R. SCHROCK and JEFFREY H. WENGROVIUS

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.)

(Received August 4th, 1980)

Summary

The reaction of Ta(=CHCMe₃)(PR₃)₂ Cl₃ and W(=O)(OCMe₃)₄ yields mixed oxo-alkylidene complexes of tungsten(VI). Two have been subjected to singlecrystal X-ray structural analysis. W(=O)(=CHCMe₃)(PEt₃)₂ Cl₂ is disordered, but a full characterization of W(=O)(=CHCMe₃)(PMe₃)₂ Cl₂ has been completed. The oxo and alkylidene ligands occupy mutually *cis* locations with W=O 1.701(15) Å, W=CHCMe₃ 2.006(15) Å and $<O=W=C 101.6(8)^{\circ}$.

Although alkylidene derivatives of tantalum and niobium are now well characterized [1], there are few such complexes known for the other transition metals. Recently, alkylidene transfer from tantalum has been shown [2] to yield alkylidene complexes of tungsten, via eq. 1.

 $Ta(=CHCMe_3)(PR_3)_2 Cl_3 + W(=O)(OCMe_3)_4 \rightarrow$

 $Ta(OCMe_3)_4 Cl + W(=O)(=CHCMe_3)(PR_3)_2 Cl_2$ (1)

The resulting products of interest are formally oxo-alkylidene complexes of tungsten(VI) and are catalysts for the metathesis of both terminal and internal olefins [3].

We now report the results of single-crystal X-ray diffraction studies on the

0022-328X/81/0000-0000/\$ 02.50, © 1981, Elsevier Sequoia S.A.

^{*}Address correspondence to this author.

^{**}On sabbatical leave from: Department of Chemistry, State University of New York College at

Plattsburgh, Plattsburgh, New York 12901 (U.S.A.)

catalytically active complexes $W(=O)(=CHCMe_3)(PEt_3)_2 Cl_2$ and $W(=O)(=CHCMe_3)(PMe_3)_2 Cl_2$.

The complex W(=O)(=CHCMe₃)(PEt₃)₂ Cl₂ crystallizes in the centro-symmetric orthorhombic space group *Pbcn* with a 14.397(4), b 13.755(4), c 12.388(3) Å, V 2453 Å³, M = 577.18, $D_c = 1.56$ g cm⁻³, Z = 4, and μ (Mo- K_{α}) 53.3 cm⁻¹.

Diffraction data were collected via the coupled θ (crystal)— 2θ (counter) technique [4] on a Syntex P2₁ diffractometer. Refinement of anisotropic thermal parameters for the tungsten atom and isotropic thermal parameters for the other non-hydrogen atoms led to R = 13.9% for 1139 independent reflections. While the overall coordination geometry was determined, there was a severe disorder problem. The molecule lies on a C_2 axis which results necessarily in disorder of chloride and oxo ligands (see Ia and Ib) and there is additional rotational disorder involving portions of the CHCMe₃ and PEt₃ ligands. We therefore turned our attention to the species W(=O)(=CHCMe₃)-(PMe₃)₂ Cl₂. This crystallizes in the non-centrosymmetric orthorhombic space group $P2_1 2_1 2_1$ with a 11.356(2), b 11.845(3), c 14.876(4) Å, V 2001 Å³ $M = 493.02, D_c 1.64 \text{ g cm}^{-3}, Z = 4$, and μ (Mo- K_{α}) 65.2 cm⁻¹.

Diffraction data were collected as before. All nonhydrogen atoms were located and refined (using anisotropic thermal parameters for the heavy atoms), leading to R 10.3% for 2629 independent reflections with $2\theta < 40^{\circ}$. This complex is ordered. The derived molecular geometry is shown in Fig. 1.

The tungsten(VI) atom has a rather distorted octahedral coordination environment. The tungsten—alkylidene bond length W=C(1) is 2.006(15) Å, with the W=C(1)—C(2) angle being increased from a normal sp^2 angle to a value of 141.1(16)° (cf. W=C 1.942(9) Å and W=C—C 150.4(8)° in W(=CCMe₃)(=CHCMe₃)(CH₂ CMe₃)[Me₂ P(CH₂)₂ PMe₂] [5,6]).

The trimethylphosphine ligands and the oxo ligand are bent away from the neopentylidene moiety with C(1)=W-P(1) 96.5(5)°, C(1)=W-P(2)92.8(6)° and C(1)=W=O 101.6(8)°; the angle C(1)=W-Cl(1) is acute with a value of 85.5(6)°, while C(1)=W-Cl(2) 168.2(6)°. The trimethylphosphine ligands are additionally bent away from the oxo ligand with P(1)-W=O97.0(6)° and P(2)-W=O 97.9(6)°, resulting in a *trans* angle, P(1)-W-P(2), of only 160.5(2)°.

The tungsten—oxide linkage, W=O, is 1.701(15) Å in length, while the

Fig. 1. The geometry of the $W(=O)(=CHCMe_3)_2Cl_2$ molecule. Hydrogen atoms are omitted and carbon atoms of the methyl groups are reduced for clarity.

tungsten—phosphine distances are W—P(1) 2.536(7) Å and W—P(2) 2.510(9) Å. The tungsten—chloride distances are slightly different, with that *trans* to the neopentylidene ligand being marginally longer than that *trans* to the oxo ligand. (W—Cl(2) 2.508(8) Å vs. W—Cl(1) 2.485(5) Å).

The complexes $W(=O)(=CHCMe_3)(PR_3)_2 Cl_2$ undergo abstraction of phosphine with $Pd(NCPh)_2 Cl_2$, yielding the five-coordinate oxo-alkylidene species $W(=O)(=CHCMe_3)(PR_3)Cl_2$, II, one example of which (R = Et) has previously been studied [3] and found to have bond lengths significantly shorter (W=O 1.661(11) Å, W=C 1.882(14) Å, W-Cl 2.379(5)-2.389(5) Å) than in the octahedral species*.

The present tungsten(VI) oxo-alkylidene complexes are of particular interest because of their close chemical relationship to high oxidation state tungsten

^{*}Additional tabular data on these two structures is available on NAPS document no. 03762, which contains 14 pages of Supplementary Material. Order from NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. Remit in advance, U.S. funds only \$ 5.00 for photocopies or \$ 3.00 for microfiche. Outside the U.S. and Canada add postage of \$ 3.00 for photocopy and \$ 1.00 for microfiche.

and molybdenum derivatives used industrially for carrying out olefin metathesis reactions [7-10].

This work was supported by the National Science Foundation (Grant CHE79-24560 to M.R.C. and CHE79-05307 to R.R.S.)

References

- 1 R.R. Schrock, Acc. Chem. Res., 12 (1979) 93.
- 2 R.R. Schrock, S. Rocklage, J.H. Wengrovius, G.A. Rupprecht, and J.D. Fellman, J. Molec. Catal., 8 (1980) 73.
- 3 J.H. Wengrovius, R.R. Schrock, M.R. Churchill, J.R. Missert and W.J. Youngs, J. Amer. Chem. Soc., 102 (1980) 4515.
- 4 M.R. Churchill, R.A. Lashewycz, and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 5 M.R. Churchill and W.J. Youngs, J. Chem. Soc. Chem. Commun., (1979) 321.
- 6 M.R. Churchill and W.J. Youngs, Inorg. Chem., 18 (1979) 2454.
- 7 T.J. Katz, Advan. Organometal. Chem., 16 (1977) 283.
- 8 R.J. Haines and G.J. Leigh, Chem. Soc. Rev., 4 (1975) 155.
- 9 N. Calderon, E.A. Ofstead, and W.A. Judy, Angew. Chem. Internat. Edn., 15 (1976) 401.
- 10 N. Calderon, J.P. Lawrence, and E.A. Ofstead, Advan. Organometal. Chem., 17 (1979) 449.